Центр юридических услуг

Все о ваших правах

4 закон менделя

С чем же связана важность исключений из закона Менделя о независимом комбинировании? Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус).

Однако это соотношение может меняться в зависимости от типа наследования. Так, в случае полного доминирования выделяются 75% особей с доминантным и 25% с рецессивным признаком, т.е. два фенотипа в отношении 3:1. При неполном доминировании и кодоминировании 50% гибридов второго поколения (F2) имеют фенотип гибридов первого поколения и по 25% – фенотипы исходных родительских форм , т .е . наблюдается расщепление 1 :2:1 .

Данный закон утверждает, что скрещивание особей, различающихся по данному признаку (гомозиготных по разным аллелям), дает генетически однородное потомство (поколение F 1), все особи которого гетерозиготны. Все гибриды F 1 могут иметь при этом либо фенотип одного из родителей (полное доминирование), как в опытах Менделя, либо, как было обнаружено позднее, промежуточный фенотип (неполное доминирование). В дальнейшем выяснилось, что гибриды первого поколения F 1, могут проявить признаки обоих родителей (кодоминирование). Этот закон основан на том, что при скрещивании двух гомозиготных по разным аллелям форм (АА и aа) все их потомки одинаковы по генотипу (гетерозиготны – Аа), а значит, и по фенотипу.

Этот закон говорит о том, что каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (т.е. в поколении F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков. Например, в случае полного доминирования при скрещивании исходных форм, различающихся по двум признакам, в следующем поколении (F2) выявляются особи с четырьмя фенотипами в соотношении 9:3:3:1. При этом два фенотипа имеют «родительские» сочетания признаков, а оставшиеся два – новые. Данный закон основан на независимом поведении (расщеплении) нескольких пар гомологичных хромосом. Так, при дигибридном скрещивании это приводит к образованию у гибридов первого поколения (F 1) 4 типов гамет (АВ, Ав, аВ, ав), а после образования зигот – к закономерному расщеплению по генотипу и, соответственно, по фенотипу в следующем поколении (F2).

Используя закономерности реорганизации генетического материала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.

Кроссинговер – процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его вероятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними.

Этот закон называют законом (независимого) расщепления. Суть его состоит в следующем. Когда у организма, гетерозиготного по исследуемому признаку, формируются половые клетки – гаметы, то одна их половина несет один аллель данного гена, а вторая – другой. Поэтому при скрещивании таких гибридов F 1 между собой среди гибридов второго поколения F2 в определенных соотношениях появляются особи с фенотипами как исходных родительских форм , так и F 1.

В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосоме в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений – явление кроссинговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками.

1) гомозиготность исходных скрещиваемых форм;

Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки должны быть выбраны для его дигибридных экспериментов, – он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга.

Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы – любимого объекта генетиков. Если два локуса находятся на значительном расстоянии друг от друга, то разрыв между ними будет происходить так же часто, как при расположении этих локусов на разных хромосомах.

2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);

F1 — гетерозиготы (Аа), F2 — расщепление по генотипу 1 АА : 2 Аа : 1 аа.

I — скрещивание двух сортов гороха с желтыми и зелеными семенами (Р); II

Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

Гибриды Аа в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с ал- лельным геном А или аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении восстанавливается гомологичность хромосом и аллельность генов, проявляется рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не проявлял своего действия. Признаки развиваются в результате взаимодействия генов.

4 закон менделя

7. Как можно объяснить комплементарное действие гена?

Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

16. Какое расщепление по фенотипу происходит в первом поколении?

13.Какое скрещивание называют дигибридным?

Гетерозиготная особь по «n» парам признаков образует 2n типов гамет.

Закон расщепления можно объяснить гипотезой «чистоты» гамет.

Свойством неполного доминирования обладает ген, вызывающий серповидноклеточную анемию у человека.

Проявление признаков — результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков

Моравский монах и генетик растений. Иоганн Мендель родился 1822 году в местечке Хейнцендорф (ныне Гинчице в Чехии), где его отец владел небольшим крестьянским наделом. Грегор Мендель, по свидетельству знавших его, действительно был добрым и приятным человеком. После получения начального образования в местной деревенской школе и позже, по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс. Четырьмя годами спустя родители Иоганна в результате стечения многих, быстро следовавших друг за другом, несчастливых событий были полностью лишены возможности возмещать необходимые расходы, связанные с учебой, а их сын, будучи тогда лишь 16 лет от роду, вынужден был совершенно самостоятельно заботиться о собственном содержании. В 1843 году Мендель был принят в Августинский монастырь святого Томаша в Альтбрюнне, где и принял имя Грегор. В 1846 году Мендель слушал также лекции по хозяйствованию, садоводству и виноградарству в Философском институте в Брюнне. В 1848 году, завершив курс богословия, с глубоким почтением Мендель получил разрешение готовиться к экзаменам на степень доктора философии. Когда же в следующем году он укрепился в намерении экзаменоваться, то ему было вручено предписание занять место супплента императорско-королевской гимназии в Цнайме, чему он последовал с радостью.

Чарльз Дарвин определял наследственность как свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение, а изменчивость как свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

В 1851 году Грегор Мендель замахнулся на кардинальный вопрос биологии – на проблему изменчивости и наследственности. Именно тогда он начал проводить опыты по направленному культивированию растений. Мендель доставлял различные растения из дальних и ближних окрестностей Брюнна. Культивировал растения по группам в специально отведенной для каждой из них части монастырского сада при различных внешних условиях. Он занимался кропотливыми метеонаблюдениями. Больше всего экспериментов и наблюдений Грегор проводил с горохом, который, начиная с 1854-го, из года в год каждую весну высевал в маленьком садике под окнами прелатуры. На горохе оказалось не сложно ставить четкий гибридизационный опыт. Для этого нужно лишь вскрыть пинцетом крупный, хоть еще и не дозревший цветок, оборвать пыльники, и самостоятельно предопределять ему «пару» для скрещивания. Поскольку самоопыление исключено, сорта гороха представляют собою, как правило, «чистые линии» с неизменяющимися от поколения к поколению константными признаками, которые очерчены крайне четко. Мендель выделил признаки, определявшие межсортовые различия: окраску кожуры зрелых зерен и – отдельно – зерен незрелых, форму зрелых горошин, цвет «белка» (эндоспермы), длину оси стебля, расположение и окраску бутонов. Тридцать с лишним сортов использовал он в эксперименте, и каждый из сортов предварительно был подвергнут двухлетнему испытанию на «константность» , на «постоянство признаков» , на «чистоту кровей» – в 1854-м и в 1855-м. Восемь лет шли эксперименты с горохом. Сотни раз за восемь цветений своими руками он аккуратно обрывал пыльники и, набрав на пинцет пыльцу с тычинок цветка другого сорта, наносил ее на рыльце пестика. На десять тысяч растений, полученных в итоге скрещиваний и от самоопылившихся гибридов, было заведено десять тысяч паспортов. Записи в них аккуратны: когда родительское растение выращено, какие цветы у него были, чьей пыльцой произведено оплодотворение, какие горошины – желтые или зеленые, гладкие или морщинистые – получены, какие цветы – окраска по краям, окраска в центре – распустились, когда получены семена, сколько из них желтых, сколько зеленых, круглых, морщинистых, сколько из них отобрано для посадки, когда они высажены и так далее.

Жизнь и научные исследования Грегора Иоганна Менделя.

Закономерности, по которым признаки передаются из поколения в поколение, первым открыл великий чешский ученый Грегор Мендель. Он открыл и сформулировал три закона наследования, которые легли в основу современной генетики.

Совокупность генов, которую организм получает от родителей, составляет его генотип. Совокупность внешних и внутренних признаков – это фенотип. Фенотип развивается в результате взаимодействия генотипа и условий внешней среды. Так или иначе основой остаются признаки которые несут в себе гены.

Наследование признаков осуществляется через размножение. При половом размножении новые поколения возникают в результате оплодотворения. Материальные основы наследственности заключены в половых клетках. При бесполом или вегетативном размножении новое поколение развивается или из одноклеточных спор, или из многоклеточных образований. И при этих формах размножения связь между поколениями осуществляется через клетки, в которых заключены материальные основы наследственности (элементарные единицы наследственности) – гены – представляют собой участки ДНК хромосом.

Генетика – наука, изучающая закономерности наследственности и изменчивости живых организмов.

В 1851 году настоятель монастыря направил Менделя учиться в венский университет, где он, среди прочего, изучал ботанику. После окончания университета Мендель преподавал естественные науки в местной школе. Благодаря этому шагу его материальное положение в корне изменилось. В столь необходимом для каждых занятий благотворном благополучии физического существования к нему, с глубоким почтением, вернулись и мужество и силы, и он в течение пробного года штудировал предписанные классические предметы с большим прилежанием и любовью. В свободные часы занимался он маленьким ботанико-минералогическим собранием, предоставленным в монастыре в его распоряжение. Его пристрастие к области естествознания становилось тем большим, чем большие возможности получал он отдаваться ему. Хотя упомянутый в этих занятиях был лишен какого-либо руководства, а путь автодидакта здесь, как ни в какой иной науке, труден и ведет к цели медленно, все же за оное время Мендель приобрел такую любовь к изучению природы, что он не жалел уже сил для заполнения изменившихся у него пробелов путем самообучения и следуя советам людей, обладавших практическим опытом. 3 апреля 1851 года «учительский корпус» училища принял решение пригласить для временного замещения профессорской должности каноника монастыря святого Томаша господина Грегора Менделя. Помологические успехи Грегора Менделя дали ему право на звездный титул и на временное исполнение должности супплента по естественной истории в приготовительном классе Технического училища. В первом семестре учебы он занимался только десять часов в неделю и только у Доплера. Во втором семестре он занимался в неделю уже по двадцать часов. Из них десять – физикой у Доплера, пять в неделю – зоологией у Рудольфа Кнера. Одиннадцать часов в неделю – ботаникой у профессора Фенцля: кроме лекций по морфологии и систематике, он проходил еще специальный практикум по описанию и определению растений. В третьем семестре он записался уже на тридцать два часа занятий в неделю: десять часов – физика у Доплера, десять – химия у Роттенбахера: всеобщая химия, медицинская химия, фармакологическая химия и практикум по аналитической химии. Пять – на зоологию у Кнера. Шесть часов занятий у Унгера, одного из первых цитологов в мире. В его лабораториях он изучал анатомию и физиологию растений и проходил практикум по технике микроскопии. И еще — раз в неделю на кафедре математики – практикум по логарифмированию и тригонометрии.

Законы Менделя 2 (стр

1850 год, жизнь складывалась неплохо. Мендель уже мог сам себя содержать, и пользовался у коллег большим уважением, ибо хорошо справляться со своими обязанностями, и был очень приятен в общении. Его любили ученики.

При анализе результатов скрещивания оказалось, что все потомки (гибриды) в первом поколении одинаковы по фено­типу (все растения имели горошины желтого цвета) и по гено­типу (гетерозиготы). Первый закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, на­блюдается единообразие гибридов первого поколения как по фе­нотипу, так и по генотипу.

▪ между генами не должно быть сцепления и взаимодейст­вия, кроме полного доминирования;

Гибридизация — это скрещивание особей, отличающихся по генотипу. Скрещивание, при котором у родительских особей учитывается одна пара альтернативных признаков, называет­ся моногибридным, две пары признаков — дигибридным, более чем две пары — полигибридным.

В результате свободного комбинирования гамет в зиготах получаются разные сочетания генов. Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 частей растений с горошинами желтыми гладкими (А-Б-), 3 части — с желтыми морщинистыми (A-bb), 3 части — с зелеными гладкими (aaB-) и 1 часть — с зелеными морщинистыми (aabb), т. е. происхо­дит расщепление в соотношении 9:3:3:1, или (3+1) 2 . Отсюда можно сделать вывод, что при скрещивании гетерозиготных особей, анализируемых по нескольким парам альтернативных признаков, в потомстве наблюдается расщепление по фено­типу в соотношении (3+1) n , где n — число анализируемых признаков.

признак. Если особь была гетерозиготна, то в результате скрещи­вания происходит расщепление признаков у потомков в соотно­шении 1:1:

Затруднения в интерпретации результатов скрещивания (отклонения от законов Менделя) может вызвать и явление плейотропии, когда один ген отвечает за проявление не­скольких признаков. Так, у гомозиготных серых каракульских овец ген W детерминирует не только серую окраску шерсти, но и недоразвитие пищеварительной системы. Примерами плейотропного действия гена у человека являются синдромы Марфана и "голубых склер". При синдроме Марфана один ген вызывает развитие "паучьих пальцев", подвывих хрусталика, деформацию грудной клетки, аневризму аорты, высокий свод стопы. При синдроме "голубых склер" у человека наблюдают­ся голубая окраска склер, ломкость костей и пороки развития сердца.

▪ у гибридного организма гены не гибридизируются (не смешиваются), а находятся в чистом аллельном состоянии;

Если проанализировать расщепление по каждой из пар признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность), то получится 12 особей с желтыми (гладкими) и 4 особи с зелеными (морщинистыми) семенами. Их соотно­шение равно 12:4, или 3:1. Следовательно, при дигибридном скрещивании каждая пара признаков в потомстве дает рас­щепление независимо от другой пары. Это является результа­том случайного комбинирования генов (и соответствующих им признаков), что приводит к новым сочетаниям признаков, которых не было у родительских форм. В нашем примере, ис­ходные формы гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении получены растения не только с сочетанием родительских признаков, но и с новы­ми сочетаниями — желтыми морщинистыми и зелеными глад­кими семенами. Отсюда следует

При экспериментальной и селекционной работе довольно часто возникает необходимость выяснить генотип особи с доми­нантным признаком. Для этого проводят анализирующее скрещи­вание: исследуемую особь скрещивают с рецессивной гомозиго­той. Если она была гомозиготной, то гибриды первого поколения будут единообразны — все потомки будут иметь доминантный

Скрещивание животных и растений (гибридизация) про­водится человеком с незапамятных времен, однако устано­вить закономерности передачи наследственных признаков не удавалось. Гибридологический метод Г. Менделя, с помощью которого были выявлены эти закономерности, имеет следую­щие особенности:

Законы Менделя и условия их проявления

Затем Мендель скрестил гибриды первого поколения меж­ду собой — P(F1): AaBb x AaBb.

Второй закон Менделя — закон расщепления. При скрещива­нии гибридов первого поколения, т. е. гетерозиготных осо­бей, получается следующий результат:

Proudly powered by WordPress